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LElTER TO THE EDITOR 

Tethered membranes with long-range self-avoidance: 
large-dimension limit 

Pierre Le Doussalt 
Institute for Advanced Study, Rinceton NJ 08540, USA 

Received 17 Deccmber 1991 

A h c t .  The influence of long-range seZavoiding forces on the statistical mechanics of 
a D-dimensional tethered membrane is studied in the limit of large embedding spacc 
dimension d -00. We find three distinct isotropic (crumpled) phases and several flat phases, 
and thermally driven crumpling transitions for D>Z. The effect of attraction and of 
shon-range repulsion for D> 2 is also discussed. 

There is currently much interest in understanding the effect of steric repulsion on the 
statistical mechanics of polymerized membranes. These membranes are usually 
modelled by tethered surfaces [l] where the constituent particles are bonded to form 
a D-dimensional permanent network moving in an external d-dimensional space. One 
controversial and mathematically difficult question is whether the crumpling transition 
from a low-temperature flat phase to a high-temperature isotropic phase, which does 
occur in phantom (e.g. 'self-intersecting) membranes [ 11, survives for physical mem- 
branes (D = 2, d = 3 j when seif-avoidance is taken into account i2j. Extensive numeri- 
cal simulations [3] show that a large class of self-avoiding tethered surfaces are Rat 
at all temperatures, although with an anomalous roughening exponent of transverse 
fluctuations. However, recent experiments 141 as well as numerical simulations [ 5 ]  
suggest that a crumpled state might exist. Since the upper critical dimension for 
self-avoidance in the crumpled phase of phantom membranes d,(D) =2D/(2-D) is 
infinite for D = 2, perturbative RG expansions [6] have not settled the issue and it 
seems desirable to investigate other methods. 

One approach which has proven very useful in understanding phantom membranes, 
is the large-d limit, which can be studied exactly using standard field theoretical 1 / N  
expansion techniques (here N = d ) .  In this limit it was shown [7] that there is a 
high-temperature crumpled phase and a low-temperature Rat phase which exists for 
D > D!; = 2 - 2!d + . . . . In this letter we present a simple-minded attempt to extend 
this analysis to include some self-avoidance effects, and we will restrict ourselves to 
the lowest order in l / d  (the analysis of the fluctuations, for instance the next order 
in l / d  is in progress [SI). There are two major difficulties. The first one is that for 
self-avoidance to have the most interesting effect at this order, it must be long ranged, 
and here we will mainly consider an interaction potential V ( r ( x )  - r(x'))  between 
monomers Labelled by their internal coordinates x, x', decaying at large distance as 
V(r)-)rl-a. Such long-range repulsive forces can exist in real membranes, and in [9 ]  
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the effect of a Coulomb repulsion (8 = d -2) was investigated esing perturbative RG 
methods. The second difficulty is that contrary to the usual l / d  expansion, mutual 
interactions require the introduction of a bilocal field B(x,  x’), e.g. is a set of LZD 
fluctuating variables where L D  is the total number of monomers, and one could worry 
that fluctuations around the saddle point give a LZD (i.e. non-thermodynamic) contribu- 
tion to the effective action at the next order in l/d. The approximation of considering 
only the lowest order in 1 f d would amount to exchange of the order of limits d + 00 

and L+m, or equivalently allowing the distances between pairs of monomers to 
fluctuate (with variance B(x,  x’)) neglecting the constraints due to triangular 
inequalities. Preliminary results [8] suggest that this problem might be less severe than 
it seemst. Indeed, most of the results of this letter as a function of S are very analogous 
to those of [9], which suggests that for d > 6 the dependence in d is weak. However, 
for D > 2 we find new possibilities for phases and crumpling transitions not present 
in [9]. Finally, note that one can also interpret the present results in the spirit of a 
variational method consisting in finding the best Gaussian trial free energy (for the 
relation between the two methods, see [lo]). The exponent S then plays the role of 
an effective dimension. It is in this spirit that, in an early work [ l l ] ,  des Cloizeaux 
applied a very similar method to the polymer (D = 1) problem, which was re-examined 
recently [12]. 

We consider the following model of a tethered surface. The total energy associated 
to a configuration r ( x )  is the sum of the elastic energy and the potential energy due 
to the long-range self-avoiding force: 

A 
4d 8d (J.r. a,r-dS,,)’+- (J,r .  J,r-dD)’ 

where K is the bending rigidity, p and A are the Lam& coefficients and are kept fixed$ 
when d+m.  To study the large-d limit one introduces the auxiliary fields 
B(x, x’), s(x, x’) and ,yma(x) in order to render the action quadratic in r. The partition 
function can then be rewritten: 

Z= D r ( x )  exp(-H[r(x)]/T) 1 
= Dr(x) 1 D,y.,(x) DB(x,  x’) Ds(x, x‘) exp(-Ho/T) (2) 

where the new Hamiltonian Ho is: 

Ho= 
K 

d” x-(V’r)’+,ym,(&,r. a,r - dS,,) - ad,& - bd,ytm 
1 2  

dDxdDx‘- s(x x’) (dB(x,x’)-(~(x)-r(x’)~’ V(B(x,x’)) (3) 
2 

t Most of the modes decouple at the saddle point. and one recoven a thermodynamic behaviour. 
$Equation ( 1 . 1 )  differs from the usual way of writing the energy. We have performed rescalings by factors 
of d in order to recover the form familiar from usual I/N expansions. In terms of the ’true’ bending rigidity 
and Lam6 coefficients I (~ ,  go, A. one has I( = r,/d* ggo/d, A = Ao/d. TlIe distances have also been rescaled 
r =  dro, as well as the potential. 
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with 

As usual, the effective action to dominant order for d + m  is the sum of the tree 
contribution (of order d )  and a 1-loop contribution (also of order d)  coming from 
integration over d degrees of freedom r ( x ) .  To obtain it one writes r ( x )  = r(x).,+ S r ( x )  
and integrate over the fluctuating part of S r ( x ) .  One obtains: 

HcR= H d r , , ,  ,yap, E, +s<(x, x’) (4) 

where 

I 1 
2 

s,(x, x’) = S(X, x‘) -- S(X-x‘) dDy(s(x,y)+s(y, x)). 

We now look for a saddle point of the effective Hamiltonian HeS. As in the analysis 
without self-avoidance one looks for 

rav(x) = d”2f.,me,, e,, . e, = 6,, X@ (XI  = X&, (5) 

from isotropy and translational invariance in the internal coordinates, to which we 
now add 

B(x, x‘) = B ( x - x ’ )  s(X, x’) = s(x - x’) (6) 

that is we assume a translationally invariant saddle point (we neglect possible boundary 
effects). We also assume that B and s are even functions of x. One can check that this 
saddle point satisfies the general equations where no symmetry is assumed. Variations 
with respect to B ( x ) ,  s(x), ,y, 5 respectively, lead to the following saddle point equations, 
where s,(q)  = s ( q )  - s ( q  = 0): 

s,(q)= dDx[l-cos(q~)]V’(B(x)) I 
q2 

~ q ~ + Z ~ q ~ + 2 s , ( q )  
1 - C2+2(a + Db)X =- 

,y= -- dDxx2V’(B(x)), 
2 D  ‘ I  

The last equation holds a priori only when C is non-zero, i.e. in the flat phase. B ( x )  
is the mean-square distance per degree of freedom between two monomers of separation 
x in the internal coordinates. A lattice cutoff A- l /a  is implicit in all integrals. 

Before analysing the phase diagram resulting from the saddle point equations 
7(a -d ) ,  we recall the analysis of [ 7 ]  for V(r) = 0. Then s,(q)  = 0 and only equations 
7(c, d)  survive. In the ferromagnetic phase ,y = O  and 7 ( c )  gives 
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Thus the membrane is flat at low temperature Z’S Z’,. Since from (8) Z’, vanishes for 
D -z 2 the flat phase exists only in more than two dimensions. For T 3 T, the membrane 
is crumpled and 5 = 0. The parameter ,y 1 0  is then determined by equation 7( c). The 
membrane is then equivalent to a Gaussian membrane and ,y is the entropic spring 
constant. 

Wenowassume V(z)>O, V‘(z)<Oforall z (monotonicself-repulsion) and V’(z)- 
- v / z ’ + ~ / ~  for large z. Let us first analyse the expression 

r (d=  ~ 4 + 2 ~ q ~ + 2 s , ( q )  (10) 
which appears in the saddle point equations and gives the effective energy of transverse 
fluctuations. If we assume that the radius of gyration R scale with the size L of the 
membrane with exponent U, R - L‘, for large 1x1, B ( x )  - B[x(’”. From equation 7(a) ,  
one then finds that s,(q) has quite generally the following possible behaviour for 
small q:  

D + 2  
for U<- 

s + 2  
2v+v6-D 

% ( P )  - -coq 

D + 2  D+4  
s + 2  s+2 

s.(q)--rq2+ Clq2’+’6-D for - <U<- 

D + 4  
for - 

s + 2 < ’  
2 q 4  J dDxx4V‘(B(x))+. . . 

4 ! D ( D + 2 )  s , ( d - - r q  - 

where CO, C,, are positive constants. We have defined 

r =  -- I I dDxxZV’(B(x)). 
2D 

C ,  is equal to v B - ( ~ + ~ ’ * ) A , ,  where 

Note that the self-energy s d q )  of the fluctuations associated with the repulsive 
potential is negative for all q and by itself would lead to an instability (this is the case 
for situation (90) which will not occur and we need only consider (96) and (9c)). The 
q2 term has a negative coefficient - r  because repulsion between the monomers pushes 
each of them away from the plane of the membrane. This does not mean, however, 
that the membrane is unstable, because the elastic term ,yq2 compensates for it. In the 
flat phase ,y = r, and more generally ,y 2 r. One easily sees that Ss,(q) = s,(q) - rq2 is 
always positive, guaranteeing the stability. Similarly the q4 term in the expansion (9c) 
is positive because self-avoidance is unfavourable to bent configurations. 

We now list the possible phases when D and S are vaned. Their domain of existence 
is represented in figure 1. We restrict ourselves to 6 > D (the case S < D leads to a 
super-stretched flat phase or to an instability as discussed in [9]). Let us first consider 
the case C = 0. Then there are three possible isotropic phases: 

Crumpled 1 ,  for which T(q) - q2, e.g. ,y > r. This implies from (76) that U = ( 2 -  D) /2 ,  
which itself is possible from (9) only above a critical ‘dimension’ when 6 > S,(D) 
where S C ( D ) = 4 D / ( 2 - D )  corresponds to twice the fractal dimension of a single 
crumpled membrane (above which intersections are irrelevant). This regime corres- 
ponds to the ordinary crumpled phase where self-avoidance is irrelevant. For D > 2 
self-avoidance is always relevant and this regime disappears. 
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D 

Figure 1. Possible phases in the plane (D, 8 )  in the limit d-a. C1 denotes the crumpled 
phase where self-avoidance is irrelevant. CZ is a swollen crumpled phase with v=ZDIS. 
In addition, C3 with Y = (4  - D)/2  corresponds to the crumpling transition and exists only 
in the region where F2 and C2 coexist. FI is a flat phase with anomalous roughening and 
Fz a Rat phase with normal roughening. 

Cnrmpled2, for which r(q) - q2’+”8-D , i.e. ’ ,y = r. This implies from (76) that Y = 2D/S. 
This regime corresponds to a crumpled phase where self-avoidance is relevant with a 
non-trivial exponent. It generalizes the result of des Cloizeaux [ll] for the polymer. 
This regime corresponds to  case (96) above and thus is possible only when S,,(D) < 8 < 
&(D) where 6,,(D) =4D/(4- D). Note that this is twice the fractal dimension of the 
network at the crumpling transition to this order. Furfhermore this regime is possible 
only for U <  1 or equivalently 6 > 2 D ,  since otherwise the momentum integral in (7c) 
diverges. Thus, as represented on figure 1, for D < 2 this phase is bounded by the line 
6 = 2 D ,  below which the only solution is a flat phase (see below), and for D >  2 by 
the line 6 = S,,(D). The amplitude is 

where 

Crumpled3, for which r(q) - q4 (also ,y = r). This implies from (2.8) that Y = (4- D)/Z. 
This regime also corresponds to a crumpled phase where self-avoidance is relevant, 
but with a different exponent than the other one. In this phase the bending energy 
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dominates the fluctuations and the effective bending rigidity is 

x4 
d D X 4 ! D ( D + 2 )  W V x ) ) .  

As a consequence the exponent U corresponds to the thermal roughening exponent of 
a flat membrane. This phase does not appear in the analysis of [SI. It corresponds to 
the membrane being at the crumpling transition T =  T,, which is also an isotropic 
state. This regime corresponds to case (9c) above and thus is possible only when 
6 > D )  = 4D/ ( 4  - D ) .  Again this regime is possible only for Y < 1 which is equivalent 
to D > 2 .  - 

Let us now consider the flat phases. In the flat phase B ( x )  = &*+ B’X’”, where 
U’< 1 is the exponent of transverse roughening (usually called 5 [3]). From (7d) the 
q2 terms exactly cancel and x = r. There are two possible cases: 

Hat 1, for which l?(q)-q2+6-D. From (9) ,  since u = l ,  this implies that this phase 
exists only for D < S < D + 2. It has an anomalous transverse roughening exponent 
U’ = ( 2 +  S -2D) /2 .  The range ofvariation of u’is thus between ( 2  - D)/2  and ( 4  - D ) / 2 .  
Furthermore the self-consistency that the RHS of (76) is subdominant gives S < 2 D  (or 
equivalently the condition that the integral in (7c) is finite). Thus this phase can survive 
for D < 2. 

Hat 2, for which r(q) - q4. This is possible for 6 > D+2.  In this phase, the roughening 
is normal with u ’ = ( 4 - D ) / 2  and self-avoidance is irrelevant. The lower critical 
dimension is D = 2. 

We have listed the possible phases. A complete study of equation (7) and of the 
transitions will be presented in [8]. A simple argument for the existence of a crumpling 
transition in the region D > 2, S > 4 D / ( 4 -  D )  is as follows. A ferromagnetic phase 
must exist for small temperatures since from (7) one has: 

We have supposed infinite elastic constants for simplicity and thus c( T = 0) = 1. In 
theahove, Ss,(q)=IdDx(l -cos(x. q ) - ( ~ . q ) ~ / 2 ) V ) ( B ( x ) ) . T h u s  for Tsmallitisclear 
that 5’0 if there is no infrared divergence in the RHS, i.e. if D >  min(S - D,2). 
Similarly, if we suppose K = 0 for simplicity, the crumpled phase 2 must exist at high 
T. The RHS of (7c) must be large enough so that (7c) can be satisfied for [= 0. Since 
the RHS represents the RMS ofthe angle fluctuations this can be likened to a Lindemann 
criterion for the normals to the surface. The idea is that ,y can be considered as setting 
the scale and for large T can be made -T to satisfy (7c). More precisely, following 
a similar analysis by des Cloizeaux [ 1 I], one can rescale out all dimensional quantities, 
and find that in the crumpled 2 phase: 

U q )  = 2xq2A(qw-’) 
where 

” 7.  -(l+8/2) 

w - - ( - )  p = 2/(4D+ ( D  -2)s) A(m) = 1 
x x  
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and A(z) ,  as in [ll], satisfies rescaled integral equations analogous to (7) (for small 
2, A(2) -  z ~ - ~ + ~ ~ / *  ). This scaling form describes the crossover in momentum from a 
free membrane regime for q >> w B  to a long-distance regime where self-avoidance is 
relevant q<< wB. Of course one must have w - ~  >>a for the continuum description (7) 
to be correct, which we assume here. If this is not the case, more microscopic details 
are necessary, and in particular one should use the discretized form 1-cos(ka) for 
the free propagator [SI. Using the above form one finds that (7c) becomes: 

A solution ,y - T exists to this equation (such that the first term is small for large T ) .  
An interesting feature of D 3 2 is that, contrarily to the polymer case, short-range 

repulsive potentials V ( z )  do have an effect even in the limit d + 00. This is because 
for the phantom membrane R - a(2-D)/2 for D > 2 which from (70) cannot be preserved 
even by short-range repulsion (except maybe if V ( z ) = O  for z>.Ca). The possible 
phases for short-range potentials, such as for instance exponentially decaying potentials 
are the following. Crumpled 3 is possible with Y = (4- D)/2 :  one is then in case (9c) 
with r(q)-q4 since clearly the first two moments exist. Note that the equation 
determining the amplitude B involves short-distance details. Crumpled 2 should be 
possible by letting S+0O although involves logarithms. Finally the normal flat 2 phase 
is also possible. 

Similarly a long-range attractive potential leads, for 8 > 4D/(2 - D ) ,  to two possible 
phases, one where Y = (2 - D ) / 2  corresponding to regime (96) and the other, contracted, 
with u=2D/S, corresponding to (9a) with a negative Co. For S < 4 0 / ( 2 - D )  there 
is no obvious solution, which indicates that there might be a collapsed phase. 

To conclude, we have investigated the lowest order of a l i d  approach to tethered 
surfaces including self-avoidance. For long-range repulsion we found many possible 
regimes depending on 6 and D. Although the physics of long-range interactions is 
different this might provide some insight into the short-range problem as well. Note 
that for D = 2 ,  S = 3  we find v ' = f  (numerical simulations [3] with short-range self- 
avoidance give U' = 0.65). We found that short-range repulsion also leads to non-trivial 
solutions. Fluctuation calculations leading to higher-order l i d  corrections [8] might 
thus give interesting information. One can anticipate that the flat phases be stabilized, 
thus moving the line D = D,, = 2 figure 1 to the left. 

I thank D R Nelson for discussions. This work was supported by NSF grant DMS- 
9100383. 

Nore added. The present results, interpreted as in a variational method for shon-range self-avoidance ( 6  
being the dimension). are in surprisingly good agreement with recent numerical simulations of D = 2  
membranes in high dimensions by Crest [13]. The agreement is better than for the polymer D = I [ I l l ,  and 
much better than for the Flow value for membranes [ 2 ] .  The measurcd value vm from simulations, the value 
vp predicted here and the Flow value vs are: 

f o r S = 3 :  ",, ,=I.  Y p = l ,  v,=0.80, 
f o r S = 4  v , = I ,  v p = l ,  vF=0.66. 
for S = S  v,=O.82, u,=0.80, us=0.57, 
for S = 6: v,,, = 0.69, up = 0.66, vF = 0.50, 
f a r S = 8 :  v,=0.6, u,=0.50, up=0.40. 
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